The role of HiPIMS and Discharges with a Positive Voltage Reversal on Coating Properties in Industrial Applications such as Hard Coatings and DLC

Frank Papa1,2, Dr. Iván Fernández Martínez2, Ambiorn Wennberg2, Gerhard Eichenhofer3

1Gencoa USA, Medina, Ohio USA
2Nano4energy , Madrid Spain
3Hip-V, Stocksund, Sweden
44A-Plasma, Holzgerlingen, Germany
Jose Antonio Santiago
Jon Molina
Miguel Monclus

Iván Fernández Martínez
Ambiorrn Wennberg

Raquel González-Arrabal

Juan C. Sanchez-Lopez
Cristina T. Rojas
J.Miguel García

Victor Bellido-González

Tomás Kozác
Jiri Capek
Petr Zeman
HiPIMs with V+

High density of ions in HiPIMS, so.....

.........any effect on plasma and coating properties?
HiPIMS with V+

A new ion extraction mechanism: acceleration from target surface.

Raise of plasma potential (bombardment of low V surfaces)
HiPIMS V+
Floating Potential

\[I_{\text{peak}} \sim 200\text{A} \quad +450\text{V} \]

\[V_{\text{floating}} = -25\text{V} \]

\[E_i = E_0 + Qe (V_{\text{plasma}} - V_{\text{surface}}) \]
HiPIMS with V+ H-free DLC

6kW Hip-V 1200V – 500A.
Cr, WC and Graphite targets
40x10 cm² rectangular magnetrons.
Pure Ar atmosphere.
Deposition on Silicon + HSS coupons
High energy ions are generated in the switching electric field.
Nanomechanical properties: H/E t-a:C

More energetic ions \rightarrow higher sp3 hybridization

Hardness = 36GPa
Young’s Modulus = 248GPa

Triboindenter TI950 from Hysitron equipped with a diamond Berkovich indenter.
Raman shift – Carbon Coatings

A.C. Ferrari, Chapter 2 in “Tribology of Diamond-Like Carbon films”
Getting close to t-a:C by filtered-arc

Reference commercial ta-C by Filtered Arc (60% sp3)

sp³ ratio proportional to:
- G peak shift to higher wavenumbers
- D peak reduction

Raman excitation wavelength Argon 522nm (Green)
Double HiPIMS: Cr-doped DLC

Nanoindentation tests: Air, diamond Berkovich tip, Hysitron Xsol Stage and Tip

Temperature (°C)

Hardness (GPa)

Stable up to 400°C

‘Hard’ DLC

‘Hard’ Cr-DLC (optimum %Cr)

‘Soft’ Cr-DLC (excess of %Cr)

‘Soft’ Cr-DLC (Carbon with low sp3)
Cr-DLC: Wear vs Temperature in Air

Lowest wear rate for Double HIPIIMS Cr:DLC! < 0.5×10^{-15} m3/Nm at 200°C

Low amount of Cr is sufficient to delay graphitization.
COF for Cr-DLC

As deposited

COF for Cr-DLC as low as 0.02 at 200°C
(as compared to 0.08 for standard 30GPa DLC)

Pin-on-disk conditions: Air, Al2O3 ball, 5N, 10cm/s
Examples of ‘Hard’ DLC Coated Parts
Implementation on Industrial Tool

xPro4C
DLC - Coating System
HiPIMS with V$^+$ TaN CFUBM

<table>
<thead>
<tr>
<th>Dep. rate [µm/hr]</th>
<th>0.51</th>
<th>0.42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness [GPa]</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

25% increase of deposition rate (ion incorporation into the film)
CrN/ZrN in Industrial System
CrN/ZrN in Industrial System

3-fold rotation
2 x magnetrons
5kW average each
-60V bias
650 mm diameter x
650 mm height
CrN/ZrN in Industrial System

1µm/hr!! for CrN and ZrN

23-25 GPa
250 °C
Summary

- HIPIIMS with Positive Voltage Reversal can be used to control the degree of metal/gas ionization as well as ion energy
- 25% increase in deposition rate as compared to standard HIPIIMS
- Self “Ion Assisted” deposition for coatings on insulating substrates
- Successfully implemented on several Industrial platforms
Thank you for your attention !!

Visit us in booth #310 Genco